Connect with us

Hi, what are you looking for?

Строительство и ремонт

Все подробности про изготовление вихревых теплогенераторов своими руками

Все подробности про изготовление вихревых теплогенераторов своими руками

Содержание

  1. Обзор цен
  2. Как самому сделать генератор
  3. Помощь кавитационного теплогенератора
  4. Роторный теплогенератор
  5. Рассмотрим конструкцию генератора
  6. Виды кавитационных котлов отопления
  7. Плюсы и минусы кавитационных источников энергии
  8. Сфера применения и виды термоэлектрических генераторов
  9. Энергопечи
  10. Радиоизотопные ТЭГ
  11. Сфера применения РИТЕГ
  12. Вихревые тепловые генераторы
  13. Достоинства и недостатки
  14. Экономный кавитационный теплогенератор своими руками
  15. Изготовление теплогенератора своими руками
  16. Список деталей и приспособлений для создания генератора тепла:
  17. Выбор насоса циркуляционного действия
  18. Изготовление кавитационной камеры
  19. Изготовление водяного контура
  20. Испытание генератора
  21. Обзор популярных моделей
  22. Немного истории
  23. Виды теплогенераторов
  24. Роторный генератор тепла
  25. Статический генераторный насос
  26. Идея создания
  27. Кавитация
  28. Статический теплогенератор
  29. Как собрать теплогенератор
  30. Устанавливаем двигатель
  31. Подсоединяем насос
  32. Усовершенствуем теплогенератор
  33. Вихрегаситель
  34. Конструктивные особенности оборудования
  35. Купить или смастерить
  36. Два основных вида
  37. Главное это двигатель
  38. Комплектация и принцип работы
  39. Испытание теплогенератора
  40. Генератор на магните
  41. Физические основы
  42. Преимущества и недостатки сделанных своими руками тепогенираторов
  43. Заключение

Обзор цен

Конечно, кавитационный теплогенератор – это практически аномальный прибор, он почти идеальный генератор, купить его сложно, цена завышена. Предлагаем рассмотреть, сколько стоит кавитационный прибор отопления в разных городах России и Украины:

Город Розничная стоимость бытового теплогенератора до 50 кВт, рубли
Волгоград 50 000
Донецк 65 000
Ижевск 50 000
Киев 65 000
Санкт-Петербург 55 000

Кавитационные вихревые теплогенераторы имеют более простые чертежи, но по эффективности несколько уступают. На данный момент существует несколько компаний-лидеров рынка: роторный гидро-ударный насос-теплогенератор «Радекс», НПП «Новые технологии», электроударный «Торнадо» и электрогидроударный «Vektorplus», мини-прибор для частного дома (ЛАТР) TSGC2-3k (3 кВА) и беларусский Юрле-К.

Все подробности про изготовление вихревых теплогенераторов своими рукамиФото – Теплогенератор торнадо

Продажа производится в диллерских центрах и в магазинах-партнерах в России, Кыргизстане, Беларуси и прочих странах СНГ.

Как самому сделать генератор

Первым трубчатый агрегат был разработанный Потаповым. Но патент на него он не получил, т.к. до сих пор обоснование работы идеального генератора считается неполными «идеальным», на практике также пытались воссоздать прибор Шаубергер, Лазарев. На данный момент принято работать по чертежам Ларионова, Федоскина, Петракова, Николая Жука.

6a46a5982e5a9d3bfdc66783335cd140.jpgФото – Вихревой кавитационных генератор потапова

Перед началом работы нужно выбрать вакуумный или бесконтактный насос (подойдет даже для скважин) по своим параметрам. Для этого необходимо учесть следующие факторы:

  1. Мощность насоса (производится отдельный расчет);
  2. Потребная тепловая энергия;
  3. Величина напора;
  4. Тип насоса (повышающий или понижающий).

Несмотря на огромное разнообразие форм и видов кавитаторов, практически все промышленные и бытовые устройства выполнены в виде сопла, такая форма является наиболее простой и практичной. Кроме того, её легко модернизировать, благодаря чему значительно повышается мощность генератора

Перед началом работы обратите свое внимание на сечение отверстия между конфузором и диффузором. Его необходимо сделать не слишком узким, но и не широким, приблизительно от 8 до 15 см

В первом случае Вы повысите давление в рабочей камере, но мощность будет не высокой, т.к. объем нагретой воды будет относительно мал, по отношению к холодной. Помимо этих проблем, небольшая разность сечений способствует насыщению кислородом входящей воды из рабочего патрубка, этот показатель влияет на уровень шума насоса и возникновение кавитационных явлений в самом устройстве, что в принципе, негативно сказывается на его работе.

4d3e33b47ab6764bb473e833f8a07a68.jpgФото – Кавитационный теплогенератор

Кавитационные теплогенераторы систем отопления обязательно имеют камеры расширения. У них может быть различный профиль в зависимости от требований и необходимой мощности. В зависимости от этого показателя может меняться конструкция генератора.

Помощь кавитационного теплогенератора

Климат сегодня сильно меняется из-за работы двигателей внутреннего сгорания. 40% углекислого газа на планете вырабатывается транспортом, значительная часть выбрасывается частными домовладельцами, жгущими топливо для обогрева. Выделяется в атмосферу сонм вредных веществ, нарушаются условия существования жизни на планете. Следовательно, энергия ТЭС не предлагается в качестве альтернативы, приносящей пользу. В силу очевидных причин.

Кавитационные теплогенераторы позволяют решить часть сложностей очевидным способом: перекачивая энергию из части пространства в другую, получится решать насущные потребности человеческой жизнедеятельности. К примеру, генератор может давать тепло и забирать. Ключевое преимущество обогревателей в том, что энергия не исчезает бесследно. Она остаётся теплом на омическом сопротивлении проводов, преодолевает силы трения. Все происходит в районе силовой установки, в конечном итоге теряется паразитными эффектами, неиспользуемыми в силу разрозненности факторов. Кавитационный генератор позволит собрать потерянные крохи простым методом: примется откачивать тепло из очага его образования:

  1. Обмотки двигателя.
  2. Поверхности трения.

Уже за счёт фактора КПД установки повысится: тепловые потери греют место, откуда перекачивается тепло. Это безусловный плюс. Остальное возьмётся из воздуха. Стоит вдуматься:

  • Холодильник летом греет кухню, КПД падает.
  • Кондиционер забирает жару с мороза или выкачивает холод с подсолнечной стороны здания.

А кавитационный теплогенератор способен собственные потери утилизировать с пользой. Обязан быть признан перспективным. Сложность — как получить побольше пузырьков из механического движения. Этому уже сегодня посвящены десятки, если не сотни патентов, к примеру, RU 2313036. Несложно догадаться, что для перекачивания тепло нужно откуда-то взять. Это правильная постановка вопроса, из-за упущения смысла происходящего люди не хотят верить, что кавитационный генератор — реальность: «Как теплотехник, скажу — это бред. Энергия из ниоткуда не возникает. Затрачивать меньше электроэнергии и получать больше тепловой позволяет тепловой насос.» (форум okolotok.ru)

Если профессионалу непонятно, что речь идёт о своеобразном тепловом насосе, что знает широкая публика про кавитационный теплогенератор… Установим, кому окажется полезен кавитационный теплогенератор. Доведённую до совершенства конструкцию допустимо применять:

  1. Для отбора энергии сточных вод.
  2. Охлаждения цехов с одновременным обогревом рабочих мест.
  3. Обогрева помещений без использования нефти, газа, мазута, угля, дров и пр.

Роторный теплогенератор

Что же из себя представляет роторный теплогенератор? По сути – это несколько измененный центробежный насос, То есть имеется корпус насоса (который в данном случае является статором) с входным и выходным патрубками, и рабочей камерой, внутри которого находится ротор, выполняющий роль рабочего колеса. Главное отличие от обычного насоса заключается именно в роторе. Существует великое множество конструктивных исполнений роторов вихревых теплогенераторов, и все описывать мы конечно не будем. Самый простой из них представляет собой диск, на цилиндрической поверхности которого просверлено множество глухих отверстий определенной глубины и диаметра. Эти отверстия называют ячейками Григгса, по имени американского изобретателя, первыми испытавшего роторный теплогенератор такой конструкции. Количество и размеры этих ячеек определяется исходя из размеров диска ротора и частоты вращения электродвигателя, приводящего его во вращение. Статор (он же корпус теплогенератора), как правило, выполнен в виде полого цилиндра, т.е. труба, заглушенная с обеих сторон фланцами При этом зазор между внутренней стенкой статора и ротором весьма мал и составляет 1…1,5 мм.

В зазоре между ротором и статором и происходит нагрев воды. Этому способствует ее трение о поверхности статора и ротора, при быстром вращении последнего. Ну и конечно значительную роль в нагреве воды играют кавитационные процессы и завихрения воды в ячейках ротора. Скорость вращения ротора, как правило, составляет 3000 об/мин при его диаметре 300 мм. С уменьшением диаметра ротора необходимо увеличивать частоту вращения.

Не трудно догадаться, что при всей простоте такая конструкция требует довольно высокой точности изготовления. И очевидно, что потребуется балансировка ротора. К тому же приходится решать вопрос уплотнения вала ротора. Естественно уплотнительные элементы требуют регулярной замены.

Из выше сказанного следует, что ресурс подобных установок не так уж и велик. По мимо всего прочего, работа роторных теплогенераторов сопровождается повышенным шумом. Хотя они обладают большей на 20-30% производительностью в сравнении с теплогенераторами статического типа. Теплогенераторы роторного типа способны даже вырабатывать пар. Но является ли это преимуществом при непродолжительном сроке эксплуатации (в сравнении со статическими моделями)?

Рассмотрим конструкцию генератора

  1. Патрубок, из которого поступает вода 1 соединен при помощи фланца с насосом, суть работы которого заключается в подаче воды под определенным давлением в рабочую камеру.
  2. После того, как вода попадает в патрубок, она должна приобрести нужную скорость и давление. Для этого необходимы специально подобранные диаметры труб. Вода быстро движется к центру рабочей камеры, достигнув которой осуществляется смешение нескольких потоков жидкости, после чего образуется напор энергии;
  3. Для контроля скорости жидкости используется специальное тормозное приспособление. Его нужно установить на выходе и выходе рабочей камеры, так часто делают для нефтепродуктов (нефтяных отходов, переработок или промывок), горячей воды в бытовом приборе.
  4. Через защитный клапан жидкость продвигается к противоположному патрубку, в котором осуществляется возврат топлива в исходную точку при помощи работы циркуляционного насоса. За счет постоянного движения и производится нагрев и тепло, которое может преобразовываться в постоянную механическую энергию.

В принципе, работа проста и основана на похожем принципе, как и у вихревого устройства, даже формулы для расчета производимого тепла идентичны. Это:

Епот = — 2 Екин

Где Екин =mV2/2 – это движение Солнца (кинетическое, непостоянная величина);

Масса планеты – m, кг. опубликовано econet.ru 

Виды кавитационных котлов отопления

Создание кавитаторов – это достаточно сложный процесс. Он может происходить по нескольким путям. От способа образования кавитации теплогенераторы делятся на виды.

Виды кавитационных теплоэлектрогенераторов:

  1. Генератор тепла роторного типа очень похож по принципу действия на центробежный насос. Здесь корпус насоса является статором, в который установлена труба. Там же находится камера с ротором крутящимся, как колесо. Ротор напоминает диск и имеет массу отверстий, количество которых связано с его мощностью. Этот диск помещен в запаянный с двух сторон корпус насоса. Благодаря отверстиям в роутере и его быстрому вращению и создаются кавитационные пузырьки. Конструкция таких устройств не идеальна, они имеют низкий КПД и маленький срок службы.
  2. Статические теплогенераторы не имеют вращательных деталей. Для воссоздания кавитации применяются сопла. Здесь насос центробежного типа подает поток воды в сопло, он проходит через несколько элементов и выходит через последний, с самым узким отверстием. Выйдя из узкого отверстия, вода быстро расширяется, и образуются кавитационные пузырьки с газом внутри. Благодаря этому вода нагревается. Эта модель имеет более длительный срок службы, чем роторный теплогениратор, но при этом обладает еще более низким КПД.

Оба варианта кавитационных котлов несовершенны. Они имею низкую эффективность и недолгий срок службы. Однако сама идея подобного котла очень интересна. Возможно, ее скоро доработают, и она начнет распространяться в массах.

подобного вида работает с использованием такого топлива, как электричество. Однако он использует немного энергии, а потому его разработки достаточно перспективны.

Устройство теплогенираторов достаточно сложное. Однако имея математический склад ума и хорошие чертежи, вы сможете создать его своими руками.

Плюсы и минусы кавитационных источников энергии

Кавитационные нагреватели – это простые устройства, которые преобразуют механическую энергию рабочей жидкости в тепловую. По сути, данный прибор состоит из центробежного насоса (для ванной, скважин, систем водоснабжения частных домов), который имеет низкий показатель эффективности. Преобразование энергии в кавитационном нагревателе широко используется в промышленных предприятиях, где нагревательные элементы могут быть повреждены при контакте с рабочей жидкостью, у которой серьезная разность в температурах.

4e831cdf141ad40ff5041895e9c270cf.jpg

 Конструкция кавитационного теплогенератора

Плюсы устройства:

  1. Эффективность;
  2. Экономичность теплоснабжения;
  3. Доступность;
  4. Можно собрать своими руками домашний прибор производства тепловой энергии. Как показывает практика, самодельный прибор не уступает купленному по своим качествам.

Минусы генератора:

  1. Шумность;
  2. Сложно достать материалы для производства;
  3. Мощность слишком большая для небольшого помещения до 60-80 квадратных метров, бытовой генератор проще купить;
  4. Даже мини-приборы занимают много места (в среднем как минимум полтора метра комнаты).

Принцип работы

«Кавитация» относится к образованию пузырьков в жидкости, таким образом, рабочее колесо работает в смешанной фазе (период жидкости и пузырьков газа) окружающей среды. Насосы, как правило, не предназначены для смешанной фазы потока (их работа уничтожает пузыри, из-за чего кавитационный генератор теряет эффективность). Данные термические приспособления предназначены, чтобы вызывать смешанный поток фаз как часть перемешивания жидкости, что приводит к термической конверсии.

ff8fd82359449ce025b23d458bda72f3.jpg

Чертеж теплогенератора

В коммерческих кавитационных обогревателях, механическая энергия приводит в действие нагреватель входной энергии (например, двигатель, блок управления), в результате чего жидкость, которая отвечает за образование выходной энергии, возвращается к источнику. Такое сохранение превращает механическую энергию в ​​тепловую с небольшой потерей (как правило, менее 1 процента), поэтому при пересчете учитываются погрешности преобразования.

Немного по иному работает суперкавитационный реактивный генератор энергии. Такой нагреватель используется на мощных предприятиях, когда тепловая энергия выхода передается на жидкость в определенном устройстве, её мощность значительно превышает количество механической энергии, необходимой для приведения в действие нагревателя. Эти приборы более энергетически продуктивны, чем возвратные механизмы, в частности тем, что они не требуют регулярной проверки и настройки.

Существуют разные типы таких генераторов. Самый распространенный вид – это роторно-гидродинамический механизм Григгса. Его принцип действия основан на работе центробежного насоса. Состоит он из патрубков, статора, корпуса и рабочей камеры. На данный момент существует множество модернизаций, самый простой – приводной или дисковый (сферический) водяной насос ротационного действия. Он представляет собой дисковую поверхность, в которой просверлено много различных отверстий глухого типа (без выхода), данные конструктивные элементы называются ячейки Григгса. Их размерные параметры, число напрямую зависят от мощности ротора, конструкции теплогенератора и частоты вращения привода.

 Гидродинамический механизм Григгса

Между ротором и статором находится определенный зазор, который необходим для нагрева воды. Данный процесс осуществляется при помощи быстрого движения жидкости по поверхности диска, что способствует повышению температуры. В среднем, ротор движется приблизительно со скоростью 3000 оборотов в минуту, чего достаточно для повышения температуры до 90 градусов.

Второй вид кавитационного генератора принято называть статическим. Он не имеет, в отличие от роторного, никаких вращающихся частей, для того, чтобы осуществлялась кавитация, ему необходимы сопла. В частности, это детали известного Лаваля, которые подключены к рабочей камере.

Для работы, подключается обычный насос, как в роторном виде генератора, он нагнетает в рабочей камере давление, чем обеспечивает большую скорость движения воды, соответственно, повышение её температуры. Скорость жидкости на выходе из сопла обеспечена разностью диаметров поступательного и выходного патрубков. Его недостатком является то, что эффективность значительно ниже, чем в роторном, тем более, он более габаритный, тяжелый.

Сфера применения и виды термоэлектрических генераторов

В виду низкого КПД для ТЭГ остается два варианта применения:

  1. В местах, где недоступны другие источники электроэнергии.
  2. В процессах, где имеется избыток тепла.

Приведем несколько примеров таких устройств.

Энергопечи

Данные, устройства, совмещающие в себе следующие функции:

  • Варочной поверхности.
  • Обогревателя.
  • Источника электроэнергии.

Это прекрасный образец, объединяющий все оба варианта применения.

Индигирка – три в одном

У представленной на рисунке энергопечи следующие параметры:

  • Вес – чуть больше 50 килограмм (без учета топлива).
  • Размеры: 65х43х54 см (с разобранным дымоходом).
  • Оптимальная загрузка оргтоплива – 30 литров. Допускается использование лиственной древесины, торфа, бурового (не каменного!) угля.
  • Средняя тепловая мощность устройства около 4,5 кВт.
  • Мощность электронагрузки от 45-50 Вт.
  • Стабилизированное постоянное напряжение на выходе – 12 В.

Как видите, эти параметры вполне приемлемы для условий, где нет электричества, отопления и газа. Что касается небольшой электрической мощности, то ее вполне достаточно для зарядки мобильных устройств или питания других гаджетов, через адаптер от автомобильного прикуривателя.

Радиоизотопные ТЭГ

В качестве источника тепла для ТЭГ может выступать тепловая энергия, выделяющаяся в процессе распада нестабильных элементов. Такие источники называют радиоизотопными. Основное их преимущество заключается в том, что не требуется постоянная загрузка топлива. Недостаток – необходимость установки защиты от ионизирующего излучения, невозможность перезаправки топлива и необходимость утилизации.

Срок эксплуатации таких источников напрямую зависит от периода полураспада вещества, используемого в качестве топлива. К последнему предъявляется следующий ряд требований:

  • Высокий коэффициент объемной активности, то есть небольшое количество вещества должно обеспечивать нужный уровень выделения энергии.
  • Поддержка необходимого уровня мощности в течение длительного времени. На этот параметр отвечает, как было отмечено выше, влияет период полураспада, например у стронция-90 он 29 лет, следовательно, источник через это время потеряет половину своей мощности.
  • Ионизирующее излучение должно быть удобным для утилизации, то есть в нем должны преобладать α-частицы.
  • Необходимый уровень безопасности. То есть ионизирующее излучение не должно нанести вред экологии (в случае эксплуатации на земле) и питающемуся от такого источника оборудованию.

Таким критериям отвечают изотопы кюрия-244, плутония-238 и упоминавшийся выше стронций-90.

Сфера применения РИТЕГ

Несмотря на серьезные требования к таким источникам, сфера их применения довольно разнообразна, они используются как в космосе, так и на земле. Ниже на фото, изображен РИТЕГ, работавший на космическом аппарате Кассини. В качестве топлива использовался изотоп плутония-238. Период полураспада этого элемента чуть больше 87 лет. Под конец 20-ти летней мисси источник вырабатывал 650 Вт электроэнергии.

88899667521a0d130502a564bf1ae2f2.jpgРадиоизотопное «сердце» Кассини

Кассини была приведена в качестве примера, а на счет массовости можно констатировать, что, практически, все КА для электропитания оборудования используют РИТЕГ. К сожалению, характеристики радиоизотопных источников энергии космических аппаратов, как правило, не публикуются.

На земле ситуация приблизительно такая же. Технология РИТЕГ как бы известна, но ее детали относятся к закрытой информации. Достоверно известно, что такие установки применяются в качестве источника питания навигационного оборудования в местности, где по техническим причинам невозможно получать электроэнергию другим способом. То есть, речь идет о труднодоступных регионах.

К сожалению, такие источники не самая подходящая альтернатива ТЭС с экологической точки зрения.

b7422502f5b3daba610d665e71868169.jpgРИТЕГ поднятый с 14-митровой глубины возле Сахалина

Вихревые тепловые генераторы

Тепловые установки ТС1 предназначены для:

Тепловая установка Энергопотребление за сезон(210 дней) Стоимость отопления 1 кв. м. в год в рублях
Газовый котел «кчм» — 96 кВт 46 200 куб. м газа 46,29
Электрокотлы РУСНИТ 94 500 кВт 203,23
Тепловые установки ТС1-075 32 131 кВт 40,49
Жидкотопливные котлы «КЧМ-5» с итальянской горелкой 40 320 л. дизтоплива 322,56

Преимущества использования:
Простота конструкции и сборки, малые габариты и масса позволяют быстро устанавливать смонтированную на одной платформе установку в любом месте, а также подключать ее непосредственно к действующей схеме отопления.

Не требуется водоподготовка.

Применение системы автоматического управления не требует постоянного присутствия обслуживающего персонала.

Отсутствие тепловых потерь в теплотрассах, при монтаже тепловых станций непосредственно у потребителей тепла.

Работа не сопровождается выбросами в атмосферу продуктов горения, других вредных веществ, что позволяет применять его в зонах с ограниченными нормами ПДВ.

Сроки окупаемости затрат по внедрению тепловых станций от шести до восемнадцати месяцев.

При недостатке мощности трансформатора возможна установка электродвигателя с напряжением питания 6000-10000 вольт (только для 250 и 400 кВт).

Достоинства и недостатки

Кавитационный водонагреватель – простой прибор, преобразующий энергию жидкости в тепловую.

У такой технологии есть плюсы:

  • эффективность;
  • экономия топлива;
  • доступность.

Теплогенератор собирается своими руками из комплектующих, которые можно приобрести в строительном магазине ().

Такое устройство, по параметрам, не будет отличаться от заводских моделей.

Недостатками являются:

  • повышенный уровень шума;
  • сложность подбора материала для рабочей емкости;
  • для помещений площадью до 80 квадратных метров мощность устройства будет чрезмерной;
  • необходимо наличие свободного пространства под установку прибора.

 ВАЖНО!
Для контроля скорости движения жидкости используют специальные устройства, способные притормозить движение воды. .

Экономный кавитационный теплогенератор своими руками

Создать самодельный вихревой генератор с кавитацией вполне реально, если внимательно изучить чертежи и схемы устройства, а также понимать его принцип работы. Самым простым для самостоятельного создания считается ВТГ Потапова с КПД 93%, схема которого подойдет как для домашнего, так и для промышленного использования.

Перед тем, как приступить к сборке прибора, следует правильно выбрать насос, ориентируясь по его типу, мощности, нужной тепловой энергии и величине напора.

В основном все кавитационные генераторы имеют формы сопла, которая считается самой простой и удобной для таких устройств.

Что нужно для создания кавитатора:

  • Манометры для измерения давления;
  • Термометр для замера температуры;
  • Выходные и входные патрубки с краниками;
  • Вентили для удаления воздушных пробок из отопительной системы;
  • Гильзы для термометров.

Также нужно проследить за размером сечения отверстия между диффузором и конфузором. Оно должно быть примерно 8 – 15 см, не уже и не шире.

Схема создания кавитационного генератора:

  1. Выбор насоса – здесь следует определиться с нужными параметрами. Насос обязательно должен иметь возможность работать с жидкостями высоких температур, иначе он быстро сломается. Также он должен уметь создавать рабочее давление в минимум 4 атмосферы.
  2. Создание камеры кавитации – тут главное правильно выбрать размер сечения проходного канала. Оптимальным вариантом считается 8-15 мм.
  3. Выбор конфигурации сопла – оно может быть в виде конуса, цилиндра или просто быть закругленным. Впрочем, не так важна форма, как то, чтобы вихревой процесс начинался уже при входе воды в сопло.
  4. Изготовление водного контура – внешне это такая изогнутая трубка, ведущая от камеры кавитации. К ней присоединяются две гильзы с термометром, два манометра, воздушный вентиль, который ставится между входом и выходом.

8d179e61a1237d87422a15e099ad54dc.jpgКорпус кавитационного теплогенератора можно покрасить в любой цвет

После создания корпуса следует провести испытание теплогенератора. Для этого насос следует подключить к электроэнергии, а радиаторы к отопительной системе. Далее происходит включение в сеть.

Особенно стоит смотреть на показания манометров и выставить нужную разницу между входом и выходом жидкости в пределах 8-12 атмосфер.

Далее в систему пускается вода. Если она нагревается за 10 минут на 3-5 градусов в минуту – это хорошо. За непродолжительное время жидкость прогреется до 60 градусов. Этого вполне достаточно для работы.

Изготовление теплогенератора своими руками

Список деталей и приспособлений для создания генератора тепла:

  • для измерения давления на входе и выходе из рабочей камеры нужны два манометра;
  • термометр измерения температуры входной и вытекающей жидкости;
  • вентиль для удаления воздушных пробок из системы отопления;
  • входной и выходной патрубки с кранами;
  • гильзы под термометры.

Выбор насоса циркуляционного действия

Для этого нужно определиться с требуемыми параметрами устройства. Первой характеристикой является возможность работы насоса с высокотемпературными жидкостями. Если пренебречь таким условием, то насос быстро выйдет из строя.

Далее нужно выбрать рабочее давление, которое может создавать насос.

Для теплогенератора достаточно, чтобы при входе жидкости сообщалось давление в 4 атмосферы, можно поднять такой показатель до 12 атмосфер, что увеличит скорость нагрева жидкости.

Производительность насоса существенного влияния на скорость нагрев оказывать не будет, так как при работе жидкость проходит через условно узкий диаметр сопла. Обычно транспортируется до 3–5 кубических метров воды в час. Гораздо большее влияние на работу теплогенератора будет иметь коэффициент перехода электричества в тепловую энергию.

Изготовление кавитационной камеры

Классическим примером является выполнение приспособление в виде сопла Лаваля, которое модернизируется мастером, изготовляющим генератор своими руками

Особое внимание следует уделить выбору размера сечения проходного канала. Оно должно обеспечить максимальный перепад давления жидкости

Если устроить наименьший диаметр, то вода будет вылетать из сопла под большим давлением, и процесс кавитации будет происходить более активно.

Но в таком случае будет уменьшен поток воды, что приведет к смешиванию ее с холодными массами. Маленькое отверстие сопла также работает на увеличение числа воздушных пузырьков, что увеличивает шумовой эффект работы и может привести к тому, что пузырьки начнут образовываться уже в камере насоса. Это уменьшит срок его службы. Наиболее приемлемым, как показала практика, считается диаметр 9– 16 мм.

По форме и профилю сопла бывают цилиндрической, конусной и закругленной формы. Однозначно нельзя сказать, какой выбор будет более эффективным, все зависит от остальных параметров установки. Главное, чтобы вихревой процесс возникал, уже на этапе начального входа жидкости в сопло.

Изготовление водяного контура

577b1f9c3c527647c0560b8cf907ac74.jpgПредварительно следует составить схематично протяженность контура и его особенности, все это перенести на пол мелом. Принципиально о контуре можно сказать, что он представляет собой изогнутую трубу, которая присоединяется к выходу их кавитационной камеры, а потом жидкость подается снова на вход. В качестве дополнительных приборов подсоединяются два манометра, две гильзы, в которые устанавливают термометр. Также в контуре присутствует вентиль для сбора воздуха.

Вода в контуре поступает против часовой стрелки. Для регулирования давления ставим вентиль между входом и выходом. Применяется труба диаметром 50, что характерно для совпадения с размером патрубков.

Старые модели теплогенераторов работали без установки сопел, повышение напора воды было предусмотрено за счет разгона воды в трубопроводе достаточно большой протяженности. Но в нашем случае не стоит применять слишком большую длину труб.

Испытание генератора

Насос подключают к электричеству, а радиаторы — к системе отопления. После того как оборудование установлено, можно приступить к испытаниям. Осуществляем включение в сеть и двигатель начинает работу. При этом стоит обратить внимание на показание манометров давления и установить нужную разницу с помощью вентиля между входом и выходом воды. Разница атмосфер должна быть в диапазоне от 8 до 12 атмосфер.

После этого пускаем воду и наблюдаем за температурными параметрами. Достаточным будет нагревание в системе за десять минут на 3–5ºС за минуту. За небольшой промежуток времени нагрев достигает 60ºс. Наша система вместе с насосом запитана 15 литрами воды. Этого вполне достаточно для эффективной работы.

Для применения в быту теплогенераторов достаточно немного желания и навыков сборщика, так как все устройства применяются в готовом виде. А эффективность не заставит себя ждать.

Обзор популярных моделей

Не смотря на то, что пока еще процесс кавитации не совсем изучен, оборудование, работающее на его принципах, уже разрабатывается специалистами на многих предприятиях. Причем некоторые модели уже находятся в стадии подготовки к серийному выпуску. Они представляют собой электроустановки, которые используют для отопления и приготовления горячей воды.

bb59aecabc45727802097ef7ae3614cf.jpgТеплогенератор марки TC1

Но есть и уже выпускаемые модели. В качестве примера можно рассмотреть кавитационный теплогенератор TC1. Это современный и высокоэффективный прибор, с широким спектром действия. Он может использоваться для систем отопления, вентилирования, приготовления горячей воды.

Прибор укомплектован стандартным двигателем на 3000 об/мин, питающимся от сети в 380 В. Он устанавливается на одной раме с активатором, отвечающим за преобразование механической энергии в тепловую.

Кавитационные теплогенераторы производятся в некоторых из стран СНГ. Причем у различных производителей они имеют свои названия.

Модель ВТГ – 2,2

Наиболее известны на постсоветском пространстве следующие компании:

  • ЮСМАР (Молдова);
  • ЮрЛе и Ко (Беларусь);
  • Текмаш (Украина);
  • Гравитон (Россия).

Но все же купить такой прибор еще довольно сложно, поэтому и цены на них завышены. Например, у бытового кавитационного теплогенератора мощностью до 50 кВт цена составляет в среднем 50-55 тысяч рублей.

Если рассматривать вихревые модели, то они являются более простыми в конструктивном плане, однако и эффективность у такого оборудования несколько ниже. Сегодня на рынке продукцию такого класса предлагает всего несколько компаний. Среди них роторный гидроударный насос марки Радекс выпускает НПП Новые технологии.

Электрогидроударные и гидроударные модели Торнадо и Vektorplus производят в белорусской компании Юрле-К. Купить их можно в дилерских центрах и магазинах в странах СНГ.

Аналогичное оборудование выпускается и некоторыми российскими заводами. В их линейку входят в основном агрегаты небольшой мощности. Из них самой малой является ВТГ – 2,2. Она способна обогревать здание объемом не более 90 м³. Принцип его работы идентичен аналогичным приборам. На ротор двигателя теплогенератора установлен шнек, через него проходит поток жидкости. После нагрева она подается в трубопровод отопления. Стоимость этой модели не превышает 34 тысяч рублей.

К аппаратам со средними показателями мощности относятся кавитационные теплогенераторы ВТГ – 30. Эта модель рассчитана на дома объемом до 1400 м³. Однако с ней в комплекте необходимо приобретать шкаф управления. В этом случае процесс нагрева жидкости будет полностью автоматизирован. Но и стоит такой прибор около 150 тысяч рублей.

Смотрим видео немного о вихревых теплогенераторах:

Ижевские производители выпускают кавитационные вихревые теплогенераторы ИТПО. Они комплектуются двигателем и цилиндрической насадкой. Работая в режиме насоса, агрегат нагнетает жидкость. Затем происходит создание вихревого потока, остановка которого возможна при помощи тормозного устройства. Именно на этом этапе и осуществляется нагрев теплоносителя.

Если верить заявлениям производителя, то КПД для этой модели может достигать 150%. Возможно именно этот показатель и привлекает к еще новому оборудованию большую аудиторию потребителей, желающих кавитационный теплогенератор купить для отопления собственного дома.

Немного истории

Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.

f8c297e34bd5f4ded84043659aa19fe5.jpg

труба ранка, проникая в которую газообразная среда делится на горячий и холодный воздух — это явление было открыто в начале двадцатого века, а применяется на практике сегодня

Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.

Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.

8b2b596a85e73b05549a1ddc53e698d2.gif

Показанный на схеме принцип работы вихревой трубы несложен — поток проходит через камеру закрутки, где разбивается на два потока с разной температурой

Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.

За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!

К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.

На фото показан демонстрационный вихревой генератор, в котором вода циркулирует в замкнутом контуре

Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.

  Реклама

Виды теплогенераторов

Роторный генератор тепла

651592d133f9a0f353e7ee7d8af97222.jpgТакое устройство представляет собой видоизмененный насос центробежного действия. В таком устройстве роль статора исполняет корпус насоса, в него установлена входящая и выходящая труба. Основным рабочим органом является камера, внутрь которой помещен подвижный ротор, работающий по типу колеса.

За время создания кавитационных насосов конструкция ротора претерпела много изменений, но самой продуктивной считается модель Григгса, который одним из первых достиг положительных результатов в создании теплогенератора кавитационного действия. В таком устройстве ротор выполнен в форме диска, на поверхности которого предусмотрены многочисленные отверстия. Они глухие, с определенным диаметром и глубиной. Количество ячеек зависит от частоты электрического тока и, следственно, вращения ротора.

Статор в теплогенераторе представляет собой цилиндр, запаянный с обоих концов, в котором вращается ротор. Зазор между диском ротора и стенками статора составляет около 1,5 мм.

Ячейки ротора нужны чтобы в толще струи жидкости, которая постоянно трется о поверхности подвижного и статического цилиндра, возникали завихрения для образования кавитационных полостей. В этом же зазоре и происходит нагрев жидкости. Для эффективной работы теплогенератора поперечный размер ротора должен быть не менее 30 см, при этом определяется скорость вращения 3000 оборотов за минуту. Если сделать ротор меньшего диаметра, тогда следует увеличить число оборотов.

При всей кажущейся простоте отработка четкого действия всех частей роторного теплогенератора требуется довольно точная, включая балансировку подвижного цилиндра. Нужно уплотнение роторного вала с постоянной заменой вышедших из строя изоляционных материалов.

Коэффициент полезного действия подобных генераторов не является впечатляющим, работа сопровождается шумовым эффектом. Срок их службы непродолжителен, хотя они работают на 25% производительнее статических моделей теплогенераторов.

Статический генераторный насос

c2b810f993284dc211ab1e5ee2bfb581.jpgНаименование статического теплогенератора оборудование получило условно, что связано с отсутствием деталей вращательного действия. Чтобы создать кавитационные процессы в жидкости применяют конструкцию из сопел.

Воссоздание явления кавитации требует обеспечения высокой скорости перемещения воды, для чего применяют мощный насос центробежного принципа. Насос придает повышенное давление потоку воды, которая устремляется во входное отверстие сопла. Выходной диаметр сопла гораздо уже предыдущего и жидкость получает дополнительную энергию движения, скорость ее увеличивается. На выходе из сопла из-за быстрого расширения воды получаются кавитационные эффекты с образованием полостей газа внутри тела жидкости. Прогревание воды происходит по тому же принципу, что и в роторной модели, только эффективность несколько снижена.

Теплогенераторы статического действия имеют ряд преимуществ перед роторными моделями:

  • конструкция статорного прибора не требует принципиально точной балансировки и подгонки деталей ;
  • механическая подготовительная операция не требует четкой шлифовки;
  • из-за отсутствия подвижных деталей гораздо меньше изнашиваются уплотнительные материалы;
  • эксплуатация оборудования более длительная, до 5 лет;
  • в условиях прихода в негодность сопла, его замена потребует меньше затрат, чем в роторном варианте теплогенератора, который нужно воссоздать заново.

Идея создания

Как же быть, если не хватает средств на приобретение теплогенератора? Как его сделать самому? Я расскажу о собственном опыте в этом деле.

Идея сделать свой теплогенератор у нас появилась после знакомства с различными видами теплогенераторов. Их конструкции казались достаточно простыми, но не до конца продуманной.

Известны две конструкции таких устройств: роторная и статическая. В первом случае для создания кавитации, как можно догадаться из названия, служит ротор, во втором – основным элементом устройства является сопло. Чтобы сделать выбор в пользу одного из вариантов исполнения, сравним обе конструкции.

Кавитация

На первый взгляд, тема кавитационных теплогенераторов представляется фантастичной и вычеркнута из Википедии, но по детальному изучению оказалась любопытной. Тем интереснее становился вопрос, чем дальше авторы углублялись в изучение. Книга Фоминского о дармовых источниках энергии начинается с описания глобальной экологической катастрофы конца XX века. Среди общеизвестных фактов о вреде двигателей внутреннего сгорания, невероятных сведений о ценности кавитационных теплогенераторов выдвигаются гипотезы об изменении режима дыхания лесов планеты и… об остановке тёплого течения Гольфстрим. В 2003 году книжка читалась как сборник фантастики. Напомним, сейчас Европа обеспокоена остановкой Гольфстрима, становится ясным, что автор сумел предсказать будущее на 10 лет вперёд.

Это наталкивает на мысль, что идея кавитационных теплогенераторов не столь утопична, как пытаются представить средства массовой информации. Известно, что КПД термоэлектрических источников составлял доли процента в начале XX века, сегодня это направление считается перспективным. Эффективность первых термопар достигала 3%, что сопоставимо с успехами паровых двигателей начала XIX века. Уже сегодня инженеры (см. скрин) говорят, что КПД кавитационного теплогенератора допустим выше единицы.

242385655a55d81794d64f0be9d9c1f3.png

Кавитационный теплогенератор — насос. Поток жидкости просто переносит энергию из места в место. Любой кондиционер и холодильник показывают КПД выше 100%, работают по принципу теплового насоса, перекачивая энергию из одной области пространства в другую. Сопоставим с поливом деревьев: энергия электричества не может напитать корни, но стоит к двигателю приделать гребной винт, как потоки воды устремляются, чтобы принести живительную влагу. Принцип действия кавитационного теплогенератора в точности аналогичен.

Тепловой насос считается дорогим типом оборудования. Обычно качает тепло Земных недр или речного потока. Температура в указанных источниках невысока, понижая давление фреона, удаётся добиться забора тепла и доставки в нужное место. Холодильник не вырабатывает мороз непосредственно. Он разряжает фреон, за счёт законов термодинамики тепло переходит на испаритель, оттуда доставляется к радиатору на задней стенке.

Аналогичным образом кавитационные пузырьки образуются в местах, где давление воды ниже точки перехода в иное агрегатное состояние (см. рис.). Как результат, поглощается большое количество энергии. На перевод вещества в иное агрегатное состояние приходится затратить тепло. Которое берётся из окружающей воды, а та – перекачивает с корпуса кавитационного теплогенератора, потом из помещения. На корпусе тепло образуется за счёт нагнетания давления помпой. КПД выше единицы объясняется отбором тепла у окружающей среды. Высок процент использования собственных потерь генератора на нагрев обмоток и трение.

Статический теплогенератор

Второй тип теплогенератора называется статическим условно. Это обусловлено отсутствием вращающихся частей в конструкции кавитатора. Для создания кавитационных процессов применяются различные виды сопел. Наиболее часто используется так называемое сопло Лаваля

Чтобы возникла кавитация необходимо обеспечить большую скорость движения жидкости в кавитаторе. Для этого используется обычный центробежный насос. Насос нагнетает давление жидкости перед соплом, она устремляется в отверстие сопла, которое имеет значительно меньшее сечение, чем подводящий трубопровод, что и обеспечивает высокую скорость на выходе из сопла. За счет резкого расширения жидкости на выходе из сопла и возникает кавитация. Так же этому способствует трение жидкости о поверхность канала сопла и завихрения воды, возникающие при резком вырывании струи из сопла. То есть вода греется по тем же причинам, что и в роторном теплогенераторе, но с несколько меньшей эффективностью.

Конструкция статического теплогенератора не требует высокой точности изготовления деталей. Механическая обработка при изготовлении этих деталей сводится к минимуму в сравнении роторной конструкцией. Благодаря отсутствию вращающихся частей легко решается вопрос уплотнения сопрягаемых узлов и деталей. Балансировка также не нужна. Срок службы кавитатора значительно больше.(Гарантия на 5лет) Даже в случае выработки соплом своего ресурса изготовление и его замена потребует значительно меньшие материальные затраты (роторный теплогенератор в подобном случае придется по сути изготавливать заново).

Пожалуй, самым главным недостатком статического теплогенератора является стоимость насоса. Однако себестоимость изготовления теплогенератора данной конструкции практически не отличается от роторного варианта, а если вспомнить о ресурсе обеих установок, то этот недостаток превратится в преимущество, ведь в случае замены кавитатора насос менять не нужно.

Таким образом, мы остановим свой выбор на теплогенераторе статической конструкции, тем более что насос у нас уже имеется и тратить деньги на его покупку, не придется.

Как собрать теплогенератор

9a6b37644e73f12069798cc0f9c87671.jpgИнструменты для работы

При всех этих научных терминах, которые могут напугать незнакомого с физикой человека, смастерить в домашних условиях ВТГ вполне возможно. Повозиться, конечно, придётся, но если всё сделать правильно и качественно, можно будет наслаждаться теплом в любое время.

И начать, как и в любом другом деле, придётся с подготовки материалов и инструментов. Понадобятся:

  • Сварочный аппарат.
  • Шлифмашинка.
  • Электродрель.
  • Набор гаечных ключей.
  • Набор свёрл.
  • Металлический уголок.
  • Болты и гайки.
  • Толстая металлическая труба.
  • Два патрубка с резьбой.
  • Соединительные муфты.
  • Электродвигатель.
  • Центробежный насос.
  • Жиклёр.

Вот теперь можно приступать непосредственно к работе.

Устанавливаем двигатель

Электродвигатель, подобранный в соответствии с имеющимся напряжением, устанавливается на станину, сваренную или собранную с помощью болтов, из уголка. Общий размер станины вычисляется таким образом, чтобы на ней можно было разместить не только двигатель, но и насос. Станину лучше покрасить во избежание появления ржавчины. Разметить отверстия, просверлить и установить электродвигатель.

Подсоединяем насос

Насос следует подбирать по двум критериям. Во-первых, он должен быть центробежным. Во вторых, мощности двигателя должно хватить, чтобы его раскрутить. После того, как насос будет установлен на станину, алгоритм действий следующий:

  • В толстой трубе диаметром 100 мм и длиной 600 мм с двух сторон нужно сделать внешнюю проточку на 25 мм и в половину толщины. Нарезать резьбу.
  • На двух кусках такой же трубы длинной каждый 50 мм нарезать внутреннюю резьбу на половину длины.
  • Со стороны противоположной от резьбы приварить металлические крышки достаточной толщины.
  • По центру крышек сделать отверстия. Одно по размеру жиклёра, второе по размеру патрубка. С внутренней стороны отверстия под жиклёр сверлом большого диаметра необходимо снять фаску, чтобы получилось подобие форсунки.
  • Патрубок с форсункой подсоединяется к насосу. К тому отверстию, из которого вода подаётся под напором.
  • Вход системы отопления подсоединяется ко второму патрубку.
  • К входу насоса присоединяется выход из системы отопления.

Цикл замкнулся. Вода будет под давлением подаваться в форсунку и за счёт образовавшегося там вихря и возникшего эффекта кавитации станет нагреваться. Регулировку температуры можно осуществить, установив за патрубком, через который вода попадает обратно в систему отопления, шаровый кран.

Чуть прикрыв его, вы сможете повысить температуру и наоборот, открыв – понизить.

Усовершенствуем теплогенератор

Это может звучать странно, но и эту довольно сложную конструкцию можно усовершенствовать, ещё больше повысив её производительность, что будет несомненным плюсом для обогрева частного дома большой площади. Основывается это усовершенствование на том факте, что сам насос имеет свойство терять тепло. Значит, нужно заставить расходовать его как можно меньше.

Добиться этого можно двумя путями. Утеплить насос при помощи любых подходящих для этой цели теплоизоляционных материалов. Или окружить его водяной рубашкой. Первый вариант понятен и доступен без каких-либо пояснений. А вот на втором следует остановиться подробнее.

Чтобы соорудить для насоса водяную рубашку придётся поместить его в специально сконструированную герметическую ёмкость, способную выдерживать давление всей системы. Вода будет подаваться именно в эту емкость, и насос будет забирать её уже оттуда. Внешняя вода так же нагреется, что позволит насосу работать намного продуктивнее.

Вихрегаситель

Но, оказывается и это ещё не всё. Хорошо изучив и поняв принцип работы вихревого теплогенератора, можно оборудовать его гасителем вихрей. Подаваемый под большим давлением поток воды ударяется в противоположную стенку и завихряется. Но этих вихрей может быть несколько. Стоит только установить внутрь устройства конструкцию напоминающую своим видом хвостовик авиационной бомбы. Делается это следующим образом:

  • Из трубы чуть меньшего диаметра, чем сам генератор необходимо вырезать два кольца шириной 4-6 см.
  • Внутрь колец приварите шесть металлических пластинок, подобранных таким образом, чтобы вся конструкция получилась длинной равной четверти длины корпуса самого генератора.
  • Во время сборки устройства закрепите эту конструкцию внутри напротив сопла.

Пределу совершенства нет и быть не может и усовершенствованием вихревого теплогенератора занимаются и в наше время. Не всем это под силу. А вот собрать устройство по схеме, приведённой выше, вполне возможно.

Конструктивные особенности оборудования

Что же представляет собой такой агрегат? Основным узлом в нем является кавитационный теплогенератор, выполненный в виде насоса, со специальным профилем проточной части. Проходя через него, вода нагревается. Происходит это за счет формирования вихревого потока. Возникая в нем, кавитационные разрывы приводят к нагреву жидкости. Причем роль теплоносителя может играть любой антифриз.

Смотрим видео, устройство генератора:

Нагрев приводит к изменению химического состава жидкости за счет резкого снижения ее давления. Выделяемая при этом энергия может использоваться для отопления и является достаточно дешевой.

Такие установки, как правило потребляют в 1,5 раза меньше энергии, чем радиаторные и другие системы. При этом нагрев жидкости в них происходит в замкнутом контуре при его прохождении через кавитатор.

Принцип работы таких устройств заключается в превращении одного вида энергии в другой. Она в свою очередь преобразуется в тепловую, причем разница между выделяемой и потребляемой достаточно существенная.

К достоинствам кавитационных теплогенераторов следует отнести возможность их монтажа без каких-либо разрешительных документов. Это связано с тем, что электроэнергия в них используется лишь для работы электродвигателя.

И хотя сегодня ни одна из существующих теорий не может полностью описать процессы, происходящие в кавитаторе, они все же, эксплуатируются по всему миру и причем довольно успешно. Что касается научных исследований в этой сфере, то они сводятся к фиксации особенностей работы тепловых установок такого типа.

Купить или смастерить

Как видим, цены на теплогенераторы космические. Не каждый может себе позволить такой , поэтому экономы пытаются сделать его своими руками. Покупать или делать самостоятельно напрямую зависит не только от благосостояния семьи, но и от навыков и умений человека. Если же таковых нет, лучше не рисковать и не тратить время зря, ведь конструкция прибора имеет достаточно сложное строение.

Таким образом, кавитационный теплогенератор является отличным вариантом альтернативного источника обогрева для дома. Однако его высокая стоимость делает его недоступным для большинства населения планеты.

Собрать его можно и своими руками, но этот шаг оправдан только в том случае, если имеется специальный навык.

Два основных вида

Несмотря на то и дело появляющиеся сообщения о том, что кто-то где-то смастерил уникальный вихревой теплогенератор своими руками такой мощности, что можно отапливать целый город, в большинстве случаев это обычные газетные утки, не имеющие под собой никакой фактической основы. Когда-нибудь, возможно, это случиться, а пока принцип работы этого прибора можно использовать только двумя способами.

Роторный теплогенератор. Корпус центробежного насоса в этом случае будет выступать в качестве статора. В зависимости от мощности по всей поверхности ротора сверлят отверстия определённого диаметра. Именно за счёт их и появляются те самые пузырьки, разрушение которых и нагревает воду. Достоинство у такого теплогенератор только одно. Он намного производительнее. А вот недостатков существенно больше.

  • Шумит такая установка очень сильно.
  • Изношенность деталей повышенная.
  • Требует частой замены уплотнителей и сальников.
  • Слишком дорогое обслуживание.

Статический теплогенератор. В отличие от предыдущей версии, здесь ничего не вращается, а процесс кавитации происходит естественным путём. Работает только насос. И список достоинств и недостатков принимает резко противоположное направление.

  • Прибор может работать при низком давлении.
  • Разница температур на холодном и горячих концах довольно велика.
  • Абсолютно безопасен, в каком бы месте не использовался.
  • Быстрый нагрев.
  • КПД 90 % и выше.
  • Возможность использования, как для обогрева, так и для охлаждения.

Единственным недостатком статического ВТГ можно считать дороговизну оборудования и связанную с этим довольно долгую окупаемость.

Главное это двигатель

Выбирать двигатель нужно в зависимости от того, какое напряжение имеется. Есть много схем, при помощи которых можно подключить к сети 220 Вольт двигатель на 380 Вольт и наоборот. Но это другая тема.

Начинают сборку теплового генератора с электродвигателя. Его надо будет закрепить на станине. Конструкция этого устройства представляет собой металлический каркас, который проще всего сделать из угольника. Размеры надо будет подбирать на месте для тех устройств, которые будут в наличии.

c042baeefba42bed7bd7f160f81819da.jpg

Чертеж вихревого теплогенератора.

Список инструментов и материалов:

  • угловая шлифовальная машинка;
  • сварочный аппарат;
  • электродрель;
  • набор сверл;
  • рожковые или накидные ключи на 12 и на 13;
  • болты, гайки, шайбы;
  • металлический уголок;
  • грунтовка, краска, кисть малярная.
  1. Нарежьте при помощи угловой шлифовальной машинки угольники. Используя сварочный аппарат, соберите прямоугольную конструкцию. Как вариант — сборку можете сделать при помощи болтов и гаек. На конечном варианте конструкции это не скажется. Длину и ширину подберите так, чтобы все детали оптимально разместились.
  2. Вырежьте еще один кусок угольника. Прикрепите его как поперечину с таким расчетом, чтобы можно было закрепить двигатель.
  3. Сделайте покраску рамы.
  4. Просверлите отверстия в каркасе под болты и установите двигатель.

Комплектация и принцип работы

Самой простой конструкцией обладает прибор, состоящий из следующих элементов:

  1. Ротора, выполненного из углеродистой стали;
  2. Статора (сварного или монолитного);
  3. Прижимной втулки с внутренним диаметром 28 мм;
  4. Стального кольца.

Принцип работы генератора рассмотрим на примере кавитационной модели. В нем вода поступает в кавитатор, после чего он раскручивается двигателем. В процессе работы узла происходит схлопывание пузырьков воздуха в теплоносителе. При этом попавшая в кавитатор жидкость разогревается.

4ff4ba181aed0f2899cb32c7c0d14d3a.jpg

Для работы , собранного своими руками, используя найденные в сети чертежи устройства следует помнить, что ему требуется энергия, которая расходуется на преодоление силы трения в устройстве, образование звуковых колебаний, нагревание жидкости. Кроме того, прибор обладает практически 100% КПД.

Испытание теплогенератора

После того как установка подключена можно приступать к испытаниям. Запускаем электродвигатель насоса и, наблюдая показания манометров, устанавливаем необходимый перепад давления. Для этого в контуре предусмотрен вентиль, находящийся между входным и выходным патрубками. Поворачивая рукоятку вентиля, устанавливаем давление в трубопроводе после сопла в диапазоне 1,2…1,5 атм. В участке контура между входом сопла и выходом насоса оптимальным давлением будет диапазон 8…12 атм.

Насос смог нам обеспечить давление на входе в сопло 9,3 атм. Установив давление на выходе из сопла 1,2 атм, пустили воду по кругу (закрыли выходной вентиль) и засекли время. При движении воды по контуру мы зафиксировали рост температуры примерно 4°С в минуту. Таким образом через 10 минут мы уже нагрели воду с 21°С до 60°С. Объем контура с установленным насосом составил почти 15 л Потребляемую электроэнергию вычислили, измерив ток. Исходя из этих данных, мы можем вычислить коэффициент преобразования энергии.

КПЭ = (С*m*(Tк-Tн))/(3600000*(Qк-Qн));

Где,

  • С – удельная теплоемкость воды, 4200 Дж/(кг*К);
  • m – масса нагреваемой воды, кг;
  • Tн – температура воды начальная, 294° К;
  • Tк – температура воды конечная, 333° К;
  • Qн – показания электросчетчика начальные, 0 кВт*ч;
  • Qк – показания электросчетчика конечные, 0,5 кВт*ч.

Подставим данные в формулу и получим:

КПЭ = (4200*15*(333-294))/(3600000*(0,5-0)) = 1,365

Это значит, что потребляя 5 кВт*ч электроэнергии наш теплогенератор производит в 1,365 раз больше тепловой, а именно 6,825 кВт*ч. Таким образом мы можем смело утверждать о состоятельности данной идеи. В этой формуле не учитывается КПД двигателя, а значит, реальный коэффициент трансформации будет еще выше.

При расчете необходимой для обогрева нашего дома тепловой мощности исходим из общепринятой упрощенной формулы. Согласно этой формуле при стандартной высоте потолка (до 3 м), для нашего региона необходимо 1 кВт тепловой мощности на каждые 10 м2.Таким образом, для нашего дома площадью 10х10=100 м2 потребуется 10 кВт тепловой мощности. Т.е. одного теплогенератора мощностью 5,5 кВт для обогрева этого дома не хватает, но это только на первый взгляд. Если вы еще не забыли, то для обогрева помещения мы собираемся использовать систему «теплый пол», которая дает экономию до 30% затрачиваемой энергии. Из этого следует, что вырабатываемых теплогенератором 6,8 кВт тепловой энергии как раз должно хватить для обогрева дома. К тому же последующее подключение теплового насоса и гелиоколлектора позволит нам еще уменьшить затраты энергии.

Генератор на магните

Магнитные системы обогрева относятся к вихревому типу и работают на основе индукционного нагревателя. В процессе функционирования образуется электромагнитное поле, чью энергию нагреваемые объекты поглощают и преобразовывают в тепловую. В основе такого агрегата лежит индукционная катушка – многовитковая цилиндрическая, при проходе через которую электрический ток создает магнитное поле переменного состояния.

Магнитный теплогенератор своими руками делают из элементов: сопло и манометр на выходе, термометр с гильзами, краны и индукционные элементы. Если разместить нагреваемый объект вблизи такого агрегата, создаваемый поток магнитной индукции будет пронизывать нагреваемый объект. Линии электрического поля располагаются перпендикулярно направлению магнитных частиц и идут по замкнутому кругу. d2bbc2adabc4e0e0f6e5d074cfbbbff0.jpgВ процессе расхождения вихревых потоков электричества энергия трансформируется в тепловую – происходит нагревание объекта.

Магнитный теплогенератор, своими руками изготовленный (с инвертором), позволяет использовать силу магнитных полей для запуска насоса, быстро прогреть помещение и любые вещества до высоких температур. Такие нагреватели могут не только нагреть воду до нужной температуры, но и расплавить металлы.

Физические основы

cc8e83499c6627a3ec486fc8ed885b0b.jpgКавитация – образование пара в массе воды при медленном понижении давления и большой скорости движения.

Пузырьки пара могут возникать под действием звуковой волны определённой частоты или излучением источника когерентного света.

В процессе смешивания паровых пустот с водой под давлением приводит к самопроизвольному схлопыванию пузырьков и возникновению движения воды ударной силы (про расчет гидравлического удара в трубопроводах написано здесь).

В таких условиях молекулы растворенных газов выделяются в образующиеся полости.

По мере прохождения процесса кавитации, температура внутри пузырьков повышается до 1200 градусов.

Это отрицательно влияет на материалы водяных емкостей, поскольку кислород при таких температурах начинает интенсивно окислять материал.

Опыты показали, что при таких условиях разрушению подвергаются даже сплавы из драгметаллов.

Сделать кавитационный генератор самостоятельно, достаточно просто. Хорошо изученная технология уже несколько лет воплощена в материалы и используется для отопления помещений.

В России, первое устройство было запатентовано в 2013 году.

Генератор представлял собой замкнутую емкость, через которую под давлением подавалась вода. Пузырька пара образовываются под действием переменного электромагнитного поля.

0c512913184b0e61f00162faabe2946d.jpgА что вам известно про полипропиленовые трубы для холодного и горячего водоснабжения? В полезной статье прочитайте о том, чем они отличаются, а также про преимущества одних и недостатки других.

Отзывы на моющие средства для посудомоечных машин прочитайте на
странице.

Преимущества и недостатки сделанных своими руками тепогенираторов

У кавитаторов есть свои преимущества и недостатки. Пока, последних больше. Однако сейчас наука работает над тем, чтобы ели не склонить устройство в положительную сторону, то хотя бы сравнять счеты.

Очень перспективной является кавитаторная конструкция Краснова. По его теории тепло можно получать добавив на литр воды пару капель отработанного масла. За счет этого вода начинает отлично гореть и выделять кавитационные пузырьки.

Итак, мы предлагаем вам рассмотреть вначале преимущества кавитаторов. Их не так много, но зато звучат они многообещающе.

Преимущества кавитаторных теплогенераторов:

  • Энергия при кавитации действительно образуются;
  • Данное устройство очень экономно, так как практически не требует топлива;
  • Недорог в изготовлении своими руками.

Это, пожалуй, пока все преимущества данного устройства. При этом он еще и имеет отрицательные стороны.

8a71ff3ce21f08d7db2598ef55c49c7b.jpgЧтобы правильно сделать тепогенератор, нужно иметь соответствующую квалификацию и использовать чертежи

Недостатки кавитационного теплоэлектрогениратора:

  • При кавитации теплогениратор очень шумит;
  • Материалы для изготовления такого устройство достаточно сложно отыскать;
  • Он использует большие показатели мощности, для любого помещения;
  • Очень габаритен и занимает много места;
  • Выглядит неэстетично;
  • Имеет низкий КПД.

Из-за своих недостатков кавитаторы еще не нашли свое широкое применение в сфере обогрева дома. Их используют лишь те, кому интересен сам принцип такой добычи тепла. Однако и они жалуются на склонность к поломкам такого устройства.

Заключение

В заключении хотелось бы предложить для обсуждения одну спорную идею.

Я уже упоминал о том, что в первых теплогенераторах вода разгонялась за счет придания ей вращательного движения в специальных цилиндрах. Вы знаете, что мы таким путем не пошли. И все же для повышения КПД необходимо чтобы вода помимо поступательного движения приобретала еще и вращательное движение. При этом скорость движения воды заметно возрастает. Подобный прием используют на соревнованиях по скоростному выпиванию бутылки пива. Перед тем, как ее выпить, пиво в бутылке хорошенько раскручивают. И жидкость выливается через узкое горлышко гораздо быстрее. И у нас появилась идея, как можно попробовать это сделать, практически не меняя уже существующую конструкцию гидродинамического контура.

Для придания воде вращательного движения будем использовать статор асинхронного двигателя с короткозамкнутым ротором воду, пропускаемую через статор необходимо предварительно омагнитить. Для этого можно использовать соленоид или постоянный кольцевой магнит. О том, что получилось из этой затеи, сообщу позже, потому что сейчас, к сожалению, нет возможности заниматься экспериментами.